Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1380976, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596648

RESUMO

Introduction: The hemin acquisition system is composed of an outer membrane TonB-dependent transporter that internalizes hemin into the periplasm, periplasmic hemin-binding proteins to shuttle hemin, an inner membrane transporter that transports hemin into the cytoplasm, and cytoplasmic heme oxygenase to release iron. Fur and HemP are two known regulators involved in the regulation of hemin acquisition. The hemin acquisition system of Stenotrophomonas maltophilia is poorly understood, with the exception of HemA as a TonB-dependent transporter for hemin uptake. Methods: Putative candidates responsible for hemin acquisition were selected via a homolog search and a whole-genome survey of S. maltophilia. Operon verification was performed by reverse transcription-polymerase chain reaction. The involvement of candidate genes in hemin acquisition was assessed using an in-frame deletion mutant construct and iron utilization assays. The transcript levels of candidate genes were determined using quantitative polymerase chain reaction. Results: Smlt3896-hemU-exbB2-exbD2-tonB2 and tonB1-exbB1-exbD1a-exbD1b operons were selected as candidates for hemin acquisition. Compared with the parental strain, hemU and tonB1 mutants displayed a defect in their ability to use hemin as the sole iron source for growth. However, hemin utilization by the Smlt3896 and tonB2 mutants was comparable to that of the parental strain. HemA expression was repressed by Fur in iron-replete conditions and derepressed in iron-depleted conditions. HemP negatively regulated hemA expression. Like hemA, hemU was repressed by Fur in iron-replete conditions; however, hemU was moderately derepressed in response to iron-depleted stress and fully derepressed when hemin was present. Unlike hemA and hemU, the TonB1-exbB1-exbD1a-exbD1b operon was constitutively expressed, regardless of the iron level or the presence of hemin, and Fur and HemP had no influence on its expression. Conclusion: HemA, HemU, and TonB1 contribute to hemin acquisition in S. maltophilia. Fur represses the expression of hemA and hemU in iron-replete conditions. HemA expression is regulated by low iron levels, and HemP acts as a negative regulator of this regulatory circuit. HemU expression is regulated by low iron and hemin levels in a hemP-dependent manner.


Assuntos
Hemina , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ferro/metabolismo
2.
Microbiol Spectr ; 12(3): e0298823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319117

RESUMO

Acanthamoeba species are clinically relevant free-living amoebae (FLA) ubiquitously found in soil and water bodies. Metabolically active trophozoites graze on diverse microbes via phagocytosis. However, functional studies on Rab GTPases (Rabs), which are critical for controlling vesicle trafficking and maturation, are scarce for this FLA. This knowledge gap can be partly explained by the limited genetic tools available for Acanthamoeba cell biology. Here, we developed plasmids to generate fusions of A. castellanii strain Neff proteins to the N- or C-termini of mEGFP and mCherry2. Phylogenomic and structural analyses of the 11 Neff Rab7 paralogs found in the RefSeq assembly revealed that eight of them had non-canonical sequences. After correcting the gene annotation for the Rab7A ortholog, we generated a line stably expressing an mEGFP-Rab7A fusion, demonstrating its correct localization to acidified macropinocytic and phagocytic vacuoles using fluorescence microscopy live cell imaging (LCI). Direct labeling of live Stenotrophomonas maltophilia ESTM1D_MKCAZ16_6a (Sm18) cells with pHrodo Red, a pH-sensitive dye, demonstrated that they reside within acidified, Rab7A-positive vacuoles. We constructed new mini-Tn7 delivery plasmids and tagged Sm18 with constitutively expressed mScarlet-I. Co-culture experiments of Neff trophozoites with Sm18::mTn7TC1_Pc_mScarlet-I, coupled with LCI and microplate reader assays, demonstrated that Sm18 underwent multiple replication rounds before reaching the extracellular medium via non-lytic exocytosis. We conclude that S. maltophilia belongs to the class of bacteria that can use amoeba as an intracellular replication niche within a Stenotrophomonas-containing vacuole that interacts extensively with the endocytic pathway.IMPORTANCEDiverse Acanthamoeba lineages (genotypes) are of increasing clinical concern, mainly causing amoebic keratitis and granulomatous amebic encephalitis among other infections. S. maltophilia ranks among the top 10 most prevalent multidrug-resistant opportunistic nosocomial pathogens and is a recurrent member of the microbiome hosted by Acanthamoeba and other free-living amoebae. However, little is known about the molecular strategies deployed by Stenotrophomonas for an intracellular lifestyle in amoebae and other professional phagocytes such as macrophages, which allow the bacterium to evade the immune system and the action of antibiotics. Our plasmids and easy-to-use microtiter plate co-culture assays should facilitate investigations into the cellular microbiology of Acanthamoeba interactions with Stenotrophomonas and other opportunistic pathogens, which may ultimately lead to the discovery of new molecular targets and antimicrobial therapies to combat difficult-to-treat infections caused by these ubiquitous microbes.


Assuntos
Acanthamoeba castellanii , Stenotrophomonas maltophilia , Acanthamoeba castellanii/microbiologia , Stenotrophomonas maltophilia/genética , Vacúolos , Filogenia , Bactérias
3.
Microbiol Spectr ; 12(4): e0356923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411052

RESUMO

Burkholderia cepacia complex (BCC) and Stenotrophomonas maltophilia are nosocomial pathogens that cause various infections and exhibit high resistance to multiple antimicrobial agents. In this study, we aimed to develop a duplex droplet digital PCR (ddPCR) assay for detecting BCC and S. maltophilia in bloodstream infections. We optimized the experimental conditions by setting the annealing temperature to 51°C and determining the optimal concentrations of primers and probes, as well as the thermal cycle numbers. The feasibility of the duplex ddPCR reaction system with the optimal conditions was established and verified through parallel reactions with reference strains of BCC and S. maltophilia. The specificity of the assay, tested with 33 reference strains, was found to be 100%. The duplex ddPCR assay demonstrated good repeatability and could detect as low as 5.35 copies/reaction of BCC and 7.67 copies/reaction of S. maltophilia. This level of sensitivity was consistent in the simulated blood and blood bottle samples. We compared nucleic acid extraction methods and found that the Chelex-100 boiling method and kit extraction method exhibited similar detection sensitivity, suggesting the potential application of the Chelex-100 boiling method in the ddPCR assay. In the clinical samples, the duplex ddPCR assay accurately detected BCC and S. maltophilia in 58 cases. In conclusion, our study successfully developed a duplex ddPCR assay that provides accurate and convenient detection of BCC and S. maltophilia in bloodstream infections.IMPORTANCEBurkholderia cepacia complex (BCC) and Stenotrophomonas maltophilia are implicated in a wide range of infections, including bloodstream infections (BSIs), pneumonia, and meningitis, and often exhibit high intrinsic resistance to multiple antimicrobial agents, limiting therapeutic options. The gold standard for diagnosing bloodstream infections remains blood culture. However, current blood culture detection and positivity rates do not meet the "rapid diagnosis" required for the diagnosis and treatment of critically ill patients with BSIs. The digital droplet PCR (ddPCR) method is a potentially more powerful tool in the diagnosis of BSIs compared to other molecular methods due to its greater sensitivity, specificity, accuracy, and reproducibility. In this study, a duplex ddPCR assay for the detection of BCC and S. maltophilia in BSIs was developed.


Assuntos
Anti-Infecciosos , Complexo Burkholderia cepacia , Poliestirenos , Polivinil , Sepse , Stenotrophomonas maltophilia , Humanos , Complexo Burkholderia cepacia/genética , Stenotrophomonas maltophilia/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase/métodos
4.
Int J Biol Macromol ; 264(Pt 1): 130421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423425

RESUMO

Infections caused by multidrug-resistant pathogens are one of the biggest challenges facing the healthcare system today. Quorum quenching (QQ) enzymes have the potential to be used as innovative enzyme-based antivirulence therapeutics to combat infections caused by multidrug-resistant pathogens. The main objective of this research was to describe the novel YtnP lactonase derived from the clinical isolate Stenotrophomonas maltophilia and to investigate its antivirulence potential against multidrug-resistant Pseudomonas aeruginosa MMA83. YtnP lactonase, the QQ enzyme, belongs to the family of metallo-ß-lactamases. The recombinant enzyme has several advantageous biotechnological properties, such as high thermostability, activity in a wide pH range, and no cytotoxic effect. High-performance liquid chromatography analysis revealed the activity of recombinant YtnP lactonase toward a wide range of N-acyl-homoserine lactones (AHLs), quorum sensing signaling molecules, with a higher preference for long-chain AHLs. Recombinant YtnP lactonase was shown to inhibit P. aeruginosa MMA83 biofilm formation, induce biofilm decomposition, and reduce extracellular virulence factors production. Moreover, the lifespan of MMA83-infected Caenorhabditis elegans was prolonged with YtnP lactonase treatment. YtnP lactonase showed synergistic inhibitory activity in combination with gentamicin and acted additively with meropenem against MMA83. The described properties make YtnP lactonase a promising therapeutic candidate for the development of next-generation antivirulence agents.


Assuntos
Pseudomonas aeruginosa , Stenotrophomonas maltophilia , Virulência , Stenotrophomonas maltophilia/genética , Fatores de Virulência , Percepção de Quorum , Acil-Butirolactonas , Hidrolases de Éster Carboxílico/farmacologia
5.
J Virol ; 98(2): e0124923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38189285

RESUMO

Phage therapy has become a viable antimicrobial treatment as an alternative to antibiotic treatment, with an increase in antibiotic resistance. Phage resistance is a major limitation in the therapeutic application of phages, and the lack of understanding of the dynamic changes between bacteria and phages constrains our response strategies to phage resistance. In this study, we investigated the changing trends of mutual resistance between Stenotrophomonas maltophilia (S. maltophilia) and its lytic phage, BUCT603. Our results revealed that S. maltophilia resisted phage infection through mutations in the cell membrane proteins, while the evolved phage re-infected the resistant strain primarily through mutations in structure-related proteins. Compared with the wild-type strain (SMA118), the evolved phage-resistant strain (R118-2) showed reduced virulence, weakened biofilm formation ability, and reduced resistance to aminoglycosides. In addition, the evolved phage BUCT603B1 in combination with kanamycin could inhibit the development of phage-resistant S. maltophilia in vitro and significantly improve the survival rate of S. maltophilia-infected mice. Altogether, these results suggest that in vitro characterization of bacteria-phage co-evolutionary relationships is a useful research tool to optimize phages for the treatment of drug-resistant bacterial infections.IMPORTANCEPhage therapy is a promising approach to treat infections caused by drug-resistant Stenotrophomonas maltophilia (S. maltophilia). However, the rapid development of phage resistance has hindered the therapeutic application of phages. In vitro evolutionary studies of bacteria-phage co-cultures can elucidate the mechanism of resistance development between phage and its host. In this study, we investigated the resistance trends between S. maltophilia and its phage and found that inhibition of phage adsorption is the primary strategy by which bacteria resist phage infection in vitro, while phages can re-infect bacterial cells by identifying other adsorption receptors. Although the final bacterial mutants were no longer infected by phages, they incurred a fitness cost that resulted in a significant reduction in virulence. In addition, the combination treatment with phage and aminoglycoside antibiotics could prevent the development of phage resistance in S. maltophilia in vitro. These findings contribute to increasing the understanding of the co-evolutionary relationships between phages and S. maltophilia.


Assuntos
Bacteriófagos , Stenotrophomonas maltophilia , Animais , Camundongos , Antibacterianos/farmacologia , Bacteriófagos/fisiologia , Mutação , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/virologia , Farmacorresistência Bacteriana , Evolução Biológica
6.
Diagn Microbiol Infect Dis ; 108(2): 116102, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984108

RESUMO

Nonfermenting gram-negative (NFGN) bacteria were isolated from cystic fibrosis (CF) patients and subjected to susceptibility testing and whole-genome sequencing. Among 170 enrolled CF patients, 112 (65.9%) were colonized with at least 1 key NFGN species. The species-specific infection rate was highest for Pseudomonas aeruginosa (40.6%) followed by Stenotrophomonas maltophilia (14.1%), Achromobacter spp. (9.4%), and Burkholderia cepacia complex (Bcc, 8.2%) demonstrating a significant age-dependent increase for P. aeruginosa and Achromobacter spp., but not for S. maltophilia or Bcc. P. aeruginosa sequence types (STs) related to high-risk epidemic and global CF clones were carried by 12 (7.1%) and 13 (7.6%) patients, respectively. In total, 47% NFGN isolates, predominantly P. aeruginosa, harbored at least 1 plasmid-borne resistance gene; 5 ST235 isolates carried blaVIM2. Pathogenicity island-borne virulence genes were harbored by 9% NFGN isolates. These findings in conjunction with frequent early colonization by Bcc raised serious concerns regarding infection control in Russian CF centers.


Assuntos
Fibrose Cística , Stenotrophomonas maltophilia , Humanos , Antibacterianos/farmacologia , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Bactérias Gram-Negativas , Stenotrophomonas maltophilia/genética , Pseudomonas aeruginosa/genética
7.
J Infect Public Health ; 17(2): 236-244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128408

RESUMO

BACKGROUND: Stenotrophomonas maltophilia (S. maltophilia) is the first dominant ubiquitous bacterial species identified from the genus Stenotrophomonas in 1943 from a human source. S. maltophilia clinical strains are resistance to several therapies, this study is designed to investigate the whole genome sequence and antimicrobial resistance genes prediction in Stenotrophomonas maltophilia (S. maltophilia) SARC-5 and SARC-6 strains, isolated from the nasopharyngeal samples of an immunocompromised patient. METHODS: These bacterial strains were obtained from Pakistan Institute of Medical Sciences (PIMS) Hospital, Pakistan. The bacterial genome was sequenced using a whole-genome shotgun via a commercial service that used an NGS (Next Generation Sequencing) technology called as Illumina Hiseq 2000 system for genomic sequencing. Moreover, detailed in-silico analyses were done to predict the presence of antibiotic resistance genes in S. maltophilia. RESULTS: Results showed that S. maltophilia is a rare gram negative, rod-shaped, non sporulating bacteria. The genome assembly results in 24 contigs (>500 bp) having a size of 4668,850 bp with 65.8% GC contents. Phylogenetic analysis showed that SARC-5 and SARC-6 were closely related to S. maltophilia B111, S. maltophilia BAB-5317, S. maltophilia AHL, S. maltophilia BAB-5307, S. maltophilia RD-AZPVI_04, S. maltophilia JFZ2, S. maltophilia RD_MAAMIB_06 and lastly with S. maltophilia sp ROi7. Moreover, the whole genome sequence analysis of both SARC-5 and SARC-6 revealed the presence of four resistance genes adeF, qacG, adeF, and smeR. CONCLUSION: Our study confirmed that S. maltophilia SARC-5 and SARC-6 are one of the leading causes of nosocomial infection which carry multiple antibiotic resistance genes.


Assuntos
Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Antibacterianos/farmacologia , Stenotrophomonas maltophilia/genética , Filogenia , Farmacorresistência Bacteriana/genética , Análise de Sequência , Infecções por Bactérias Gram-Negativas/microbiologia
8.
J Antimicrob Chemother ; 79(2): 383-390, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134316

RESUMO

BACKGROUND: SmeYZ is a constitutively expressed efflux pump in Stenotrophomonas maltophilia. Previous studies demonstrated that: (i) smeYZ inactivation causes compromised swimming, oxidative stress tolerance and aminoglycoside resistance; and (ii) the ΔsmeYZ-mediated pleiotropic defects, except aminoglycoside susceptibility, result from up-regulation of entSCEBB'FA and sbiAB operons, and decreased intracellular iron level. OBJECTIVES: To elucidate the modulatory role of SmeQ, a novel cytoplasmic protein, in ΔsmeYZ-mediated pleiotropic defects. METHODS: The presence of operons was verified using RT-PCR. The role of SmeQ in ΔsmeYZ-mediated pleiotropic defects was assessed using in-frame deletion mutants and functional assays. A bacterial adenylate cyclase two-hybrid assay was used to investigate the protein-protein interactions. Gene expression was quantified using quantitative RT-PCR (RT-qPCR). RESULTS: SmeYZ and the downstream smeQ formed an operon. SmeQ inactivation in the WT KJ decreased aminoglycoside resistance but did not affect swimming and tolerance to oxidative stress or iron depletion. However, smeQ inactivation in the smeYZ mutant rescued the ΔsmeYZ-mediated pleiotropic defects, except for aminoglycoside susceptibility. In the WT KJ, SmeQ positively modulated SmeYZ pump function by transcriptionally up-regulating the smeYZQ operon. Nevertheless, in the smeYZ mutant, SmeQ exerted its modulatory role by up-regulating entSCEBB'FA and sbiAB operons, decreasing intracellular iron levels, and causing ΔsmeYZ-mediated pleiotropic defects, except for aminoglycoside susceptibility. CONCLUSIONS: SmeQ is the first small protein identified to be involved in efflux pump function in S. maltophilia. It exerts modulatory effect by transcriptionally altering the expression of target genes, which are the smeYZQ operon in the WT KJ, and smeYZQ, entSCEBB'FA and sbiAB operons in smeYZ mutants.


Assuntos
Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Aminoglicosídeos , Ferro/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
9.
Front Cell Infect Microbiol ; 13: 1266295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089814

RESUMO

Background: Stenotrophomonas maltophilia is a multidrug-resistant (MDR) opportunistic pathogen with high resistance to most clinically used antimicrobials. The dissemination of MDR S. maltophilia and difficult treatment of its infection in clinical settings are global issues. Methods: To provide more genetic information on S. maltophilia and find a better treatment strategy, we isolated five S. maltophilia, SMYN41-SMYN45, from a Chinese community that were subjected to antibiotic susceptibility testing, biofilm formation assay, and whole-genome sequencing. Whole-genome sequences were compared with other thirty-seven S. maltophilia sequences. Results: The five S. maltophilia strains had similar antibiotic resistance profiles and were resistant to ß-lactams, aminoglycosides, and macrolides. They showed similar antimicrobial resistance (AMR) genes, including various efflux pumps, ß-lactamase resistance genes (blaL1/2), aminoglycoside resistance genes [aac(6'), aph(3'/6)], and macrolide-resistant gene (MacB). Genome sequencing analysis revealed that SMYN41-SMYN45 belonged to sequence type 925 (ST925), ST926, ST926, ST31, and ST928, respectively, and three new STs were identified (ST925, ST926, and ST928). Conclusion: This study provides genetic information by comparing genome sequences of several S. maltophilia isolates from a community of various origins, with the aim of optimizing empirical antibiotic medication and contributing to worldwide efforts to tackle antibiotic resistance.


Assuntos
Anti-Infecciosos , Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/genética , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Resistência Microbiana a Medicamentos , Genômica , Testes de Sensibilidade Microbiana
10.
Viruses ; 15(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140696

RESUMO

Stenotrophomonas maltophilia mainly causes respiratory infections that are associated with a high mortality rate among immunocompromised patients. S. maltophilia exhibits a high level of antibiotic resistance and can form biofilms, which complicates the treatment of patients infected with this bacterium. Phages combined with antibiotics could be a promising treatment option. Currently, ~60 S. maltophilia phages are known, and their effects on biofilm formation and antibiotic sensitivity require further examination. Bacteriophage StM171, which was isolated from hospital wastewater, showed a medium host range, low burst size, and low lytic activity. StM171 has a 44kbp dsDNA genome that encodes 59 open-reading frames. A comparative genomic analysis indicated that StM171, along with the Stenotrophomonas phage Suso (MZ326866) and Xanthomonas phage HXX_Dennis (ON711490), are members of a new putative Nordvirus genus. S. maltophilia strains that developed resistance to StM171 (bacterial-insensitive mutants) showed a changed sensitivity to antibiotics compared to the originally susceptible strains. Some bacterial-insensitive mutants restored sensitivity to cephalosporin and penicillin-like antibiotics and became resistant to erythromycin. StM171 shows strain- and antibiotic-dependent effects on the biofilm formation of S. maltophilia strains.


Assuntos
Bacteriófagos , Stenotrophomonas maltophilia , Humanos , Antibacterianos/farmacologia , Bacteriófagos/genética , Stenotrophomonas maltophilia/genética , Biofilmes
11.
Sci Rep ; 13(1): 22941, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135742

RESUMO

Prophages, which enables bacterial hosts to acquire novel traits, and increase genetic variation and evolutionary innovation, are considered to be one of the greatest drivers of bacterial diversity and evolution. Stenotrophomonas maltophilia is widely distributed and one of the most important multidrug resistant bacteria in hospitals. However, the distribution and genetic diversity of S. maltophilia prophages have not been elucidated. In this study, putative prophages were predicted in S. maltophilia genomes by using virus prediction tools, and the genetic diversity and phylogeny of S. maltophilia and the prophages they harbor were further analyzed. A total of 356 prophage regions were predicted from 88 S. maltophilia genomes. Among them, 144 were intact prophages, but 77.09% of the intact prophages did not match any known phage sequences in the public database. The number of prophage carried by S. maltophilia is related to its host habitat and is an important factor affecting the size of the host genome, but it is not related to the genetic diversity of the prophage. The prediction of auxiliary genes encoded by prophage showed that antibiotic resistance genes was not predicted for any of the prophages except for one questionable prophage, while 53 virulence genes and 169 carbohydrate active enzymes were predicted from 11.24 and 44.1% prophages, respectively. Most of the prophages (72.29%) mediated horizontal gene transfer of S. maltophilia genome, but only involved in 6.25% of the horizontal gene transfer events. In addition, CRISPR prediction indicated 97.75% S. maltophilia strains contained the CRISPR-Cas system containing 818 spacer sequences. However, these spacer sequences did not match any known S. maltophilia phages, and only a few S. maltophilia prophages. Comparative genomic analysis revealed a highly conserved and syntenic organization with genomic rearrangement between the prophages and the known related S. maltophilia phages. Our results indicate a high prevalence and genetic diversity of prophages in the genome of S. maltophilia, as well as the presence of a large number of uncharacterized phages. It provides an important complement to understanding the diversity and biological characteristics of phages, as well as the interactions and evolution between bacteria and phages.


Assuntos
Prófagos , Stenotrophomonas maltophilia , Prófagos/genética , Filogenia , Stenotrophomonas maltophilia/genética , Genômica , Transferência Genética Horizontal
12.
Microbiology (Reading) ; 169(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942787

RESUMO

Stenotrophomonas maltophilia is a Gram-negative emerging opportunistic pathogen often present in people with respiratory diseases such as cystic fibrosis (CF). People with CF (pwCF) experience lifelong polymicrobial infections of the respiratory mucosa. Our prior work showed that Pseudomonas aeruginosa promotes persistence of S. maltophilia in mouse respiratory infections. As is typical for environmental opportunistic pathogens, S. maltophilia has a large genome and a high degree of genetic diversity. In this study, we evaluated the genomic content of S. maltophilia, combining short and long read sequencing to construct nearly complete genomes of 10 clinical isolates. The genomes of these isolates were then compared with all publicly available S. maltophilia genome assemblies, and each isolate was then evaluated for colonization/persistence in vivo, both alone and in coinfection with P. aeruginosa. We found that while the overall genome size and GC content were fairly consistent between strains, there was considerable variability in both genome structure and gene content. Similarly, there was significant variability in S. maltophilia colonization and persistence in experimental mouse respiratory infections in the presence or absence of P. aeruginosa. Ultimately, this study gives us a greater understanding of the genomic diversity of clinical S. maltophilia isolates, and how this genomic diversity relates to both interactions with other pulmonary pathogens and to host disease progression. Identifying the molecular determinants of infection with S. maltophilia can facilitate development of novel antimicrobial strategies for a highly drug-resistant pathogen.


Assuntos
Coinfecção , Fibrose Cística , Infecções por Bactérias Gram-Negativas , Infecções Respiratórias , Stenotrophomonas maltophilia , Humanos , Camundongos , Animais , Stenotrophomonas maltophilia/genética , Genômica , Fibrose Cística/complicações , Pseudomonas aeruginosa/genética , Variação Genética
13.
mSphere ; 8(6): e0058423, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37975665

RESUMO

IMPORTANCE: Infections with the opportunistic pathogen Stenotrophomonas maltophilia complex can be fatal for immunocompromised patients. The mechanisms used by the bacterium to compete against other prokaryotes are not well understood. We found that the type VI secretion system (T6SS) allows S. maltophilia complex to eliminate other bacteria and contributes to the competitive fitness against a co-infecting isolate. The presence of T6SS genes in isolates across the globe highlights the importance of this apparatus as a weapon in the antibacterial arsenal of S. maltophilia complex. The T6SS may confer survival advantages to S. maltophilia complex isolates in polymicrobial communities in both environmental settings and during infections.


Assuntos
Stenotrophomonas maltophilia , Sistemas de Secreção Tipo VI , Humanos , Sistemas de Secreção Tipo VI/genética , Stenotrophomonas maltophilia/genética , Stenotrophomonas , Antibacterianos/farmacologia
14.
Curr Microbiol ; 81(1): 20, 2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38008776

RESUMO

Stenotrophomonas maltophilia is an opportunistic human pathogen associated with nosocomial and community-acquired infections. We have conducted a microbiological and genomic surveillance study of broad-spectrum cephalosporin- and carbapenem-resistant Gram-negative bacteria colonizing wild birds inhabiting the Brazilian Amazonia. Strikingly, two S. maltophilia strains (SM79 and SM115) were identified in Plain-throated antwren (Isleria hauxwelli) passerines affected by Amazonian fragmentation and degradation. Noteworthy, SM79 and SM115 strains belonged to new sequence types (STs) ST474 and ST473, respectively, displaying resistance to broad-spectrum ß-lactams, aminoglycosides and/or fluoroquinolones. In this regard, resistome analysis confirmed efflux pumps (smeABC, smeDEF, emrAB-tolC and macB), blaL1 and blaL2, aph(3')-IIc and aac(6')-Iak, and Smqnr resistance genes. Comparative phylogenomic analysis with publicly available S. maltophilia genomes clustered ST473 and ST474 with human strains, whereas the ST474 was also grouped with S. maltophilia strains isolated from water and poultry samples. In summary, we report two novel sequence types of S. maltophilia colonizing wild Amazonian birds. The presence of opportunistic multidrug-resistant pathogens in wild birds, from remotes areas, could represent an ecological problem since these animals could easily promote long-distance dispersal of medically important antimicrobial-resistant bacteria. Therefore, while our results could provide a baseline for future epidemiological genomic studies, considering the limited information regarding S. maltophilia circulating among wild animals, additional studies are necessary to evaluate the clinical impact and degree of pathogenicity of this human opportunistic pathogen in wild birds.


Assuntos
Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Animais , Stenotrophomonas maltophilia/genética , Brasil , Animais Selvagens , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia
15.
ACS Synth Biol ; 12(11): 3497-3504, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37906167

RESUMO

To identify the function of attachment genes involved in biofilm formation in Stenotrophomonas maltophilia AGS-1 isolated from aerobic granular sludge, an effective gene molecular tool is needed. We developed a two-plasmid CRISPRi system in Stenotrophomonas maltophilia AGS-1. One plasmid expressed dCas9 protein with the l-arabinose inducible promoter, and the other plasmid contained the sgRNA cassette complementary to the target gene. Under control of the araC-inducible promoter, this system exhibited little leaky basal expression and highly induced expression that silenced endogenous and exogenous genes with reversible knockdown. This system achieved up to 211-fold suppression for mCherry expression on the nontemplate strand compared to the template strand (91-fold). The utility of the developed CRISPRi platform was also characterized by suppressing the xanA and rpfF genes. The expression of these two genes was rapidly depleted and the adhesion ability decreased, which demonstrated that the modulation of either gene was an important factor for biofilm formation of the AGS-1 strain. The system also tested the ability to simultaneously silence transcriptional suppression of multiple targeted genes, an entire operon, or part of it. Lastly, the use of CRISPRi allowed us to dissect the gene intricacies involved in flagellar biosynthesis. Collectively, these results demonstrated that the CRISPRi system was a simple, feasible, and controllable manipulation system of gene expression in the AGS-1 strain.


Assuntos
Stenotrophomonas maltophilia , Técnicas de Silenciamento de Genes , Stenotrophomonas maltophilia/genética , Esgotos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , RNA Guia de Sistemas CRISPR-Cas
16.
Microbiol Spectr ; 11(6): e0085923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819084

RESUMO

IMPORTANCE: In the past, studies have focused on bacterial pathogenicity in mono-species infections, in part ignoring the clinical relevance of diseases caused by more than one pathogen (i.e., polymicrobial infections). However, it is now common knowledge that multiple bacteria species are often involved in the course of an infection. For treatment of such infections, it is absolutely important to understand the dynamics of species interactions at possible infection sites and the molecular mechanisms behind these interactions. Here, we studied the impact of Stenotrophomonas maltophilia on its commensals Pseudomonas aeruginosa and Staphylococcus aureus in multispecies biofilms. We analyzed the 3D structural architectures of dual- and triple-species biofilms, niche formation within the biofilms, and the interspecies interactions on a molecular level. RNAseq data identified key genes involved in multispecies biofilm formation and interaction as potential drug targets for the clinical combat of multispecies infection with these major pathogens.


Assuntos
Infecções por Pseudomonas , Infecções Estafilocócicas , Stenotrophomonas maltophilia , Humanos , Pseudomonas aeruginosa/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Stenotrophomonas maltophilia/genética , Transcriptoma , Infecções Estafilocócicas/microbiologia , Biofilmes
17.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37838475

RESUMO

AIMS: Evaluate methods for identification and typing of Stenotrophomonas maltophilia isolated from a pharmaceutical facility. METHODS AND RESULTS: From 270 S. maltophilia strains identified by VITEK®2, 40 were selected and submitted to MALDI TOF-MS, 16S and 23S rRNA gene analysis, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), and an antimicrobial susceptibility profile. 16S rRNA sequencing was able to identify 39 (97.5%) strains as Stenotrophomonas spp. and one (2.5%) as Luteimonas huabeiensis. MALDI TOF-MS identified 37 (92.5%) strains as S. maltophilia, and three (7.5%) were not identified. PCR targeting 23S rRNA yielded a positive result for 39 (97.5%) strains. However, after sequencing, two strains were identified as Stenotrophomonas rhizophila, showing false-positive results. The confirmed S. maltophilia strains (n = 37) showed 35 distinct ERIC-PCR profiles and exhibited sensitivity to minocycline and levofloxacin, and six (16.3%) showed intermediate resistance to sulfamethoxazole-trimethoprim. CONCLUSION: Matrix-assisted laser desorption lonization-time of flight mass spectrometry (MALDI-TOF MS) was a satisfactory methodology for the identification of S. maltophilia, but expansion of the database is necessary for the identification of other species. 16S rDNA sequencing showed low resolution for Stenotrophomonas species differentiation. PCR targeting 23S rRNA could not differentiate S. maltophilia from S. rhizophila. ERIC-PCR was shown to be a useful tool for the microbial source tracking of S. maltophilia.


Assuntos
Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/genética , RNA Ribossômico 16S/genética , Combinação Trimetoprima e Sulfametoxazol , Minociclina , Levofloxacino , Infecções por Bactérias Gram-Negativas/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
18.
Appl Microbiol Biotechnol ; 107(23): 7119-7134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37755512

RESUMO

Many marine organisms produce bioactive molecules with unique characteristics to survive in their ecological niches. These enzymes can be applied in biotechnological processes and in the medical sector to replace aggressive chemicals that are harmful to the environment. Especially in the human health sector, there is a need for new approaches to fight against pathogens like Stenotrophomonas maltophilia which forms thick biofilms on artificial joints or catheters and causes serious diseases. Our approach was to use enrichment cultures of five marine resources that underwent sequence-based screenings in combination with deep omics analyses in order to identify enzymes with antibiofilm characteristics. Especially the supernatant of the enrichment culture of a stony coral caused a 40% reduction of S. maltophilia biofilm formation. In the presence of the supernatant, our transcriptome dataset showed a clear stress response (upregulation of transcripts for metal resistance, antitoxins, transporter, and iron acquisition) to the treatment. Further investigation of the enrichment culture metagenome and proteome indicated a series of potential antimicrobial enzymes. We found an impressive group of metalloproteases in the proteome of the supernatant that is responsible for the detected anti-biofilm effect against S. maltophilia. KEY POINTS: • Omics-based discovery of novel marine-derived antimicrobials for human health management by inhibition of S. maltophilia • Up to 40% reduction of S. maltophilia biofilm formation by the use of marine-derived samples • Metalloprotease candidates prevent biofilm formation of S. maltophilia K279a by up to 20.


Assuntos
Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/genética , Proteoma , Antibacterianos/farmacologia , Biofilmes , Metaloproteases/genética , Metaloproteases/farmacologia
19.
Pol J Microbiol ; 72(3): 319-323, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725894

RESUMO

This work investigated the genetic relationship among Stenotrophomonas maltophilia strains in fecal samples from dairy cows in northeast China and identified the dominant ß-lactamase genotype. One hundred and six samples were collected from two randomly selected cow farms in northeast China, and the isolates were identified with MALDI-TOF/MS. Whole-genome sequencing was conducted using Illumina HiSeq 4000-PE150 platform (Illumina, Inc., USA). The antimicrobial resistance genes were detected using CGE services. The phylogenetic analysis of S. maltophilia strains was performed by Roary and MEGA X. In total, 24 S. maltophilia isolates were isolated. The results of resistome analysis showed all S. maltophilia strains carrying bla L1 gene, which was the only ß-lactamase genotype. In addition, the aminoglycoside resistance genes aac(6')-Iz and aph(3')-IIc were found. The phylogenetic tree indicated the clonal diversity of S. maltophilia in these two regions and the clonal relatedness of the strains from these regions. This study first investigated the dissemination and characterization of S. maltophilia isolates from dairy cows in northeast China and provided evidence of the potential transmission between two provinces. Furthermore, it indicated bla L1 was the most prevalent genotype of ß-lactamase in these regions.


Assuntos
Stenotrophomonas maltophilia , Animais , Feminino , Bovinos , Stenotrophomonas maltophilia/genética , Filogenia , China/epidemiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , beta-Lactamases/genética
20.
J Appl Genet ; 64(3): 591-597, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37574492

RESUMO

Stenotrophomonas maltophilia is an emerging multidrug-resistant organism with an increasing frequency of hospital-acquired infections predominantly in developing countries. The purpose of this study was to determine the antibiotic resistance and frequency of the smeD, class 1 integron, and sul1 genes in clinical isolates of S. maltophilia in two Iranian provinces. From January 2020 to September 2021, 38 clinical isolates of S. maltophilia were collected from patients in hospitals in Tabriz and Sanandaj provinces of Iran. S. maltophilia isolates were confirmed by standard bacteriological tests and 16S rRNA gene PCR. Disk diffusion and the MIC test strip methods were used to determine the antibiotic resistance patterns. PCR was performed to investigate the presence of smeD, class 1 integron, and sul1 genes. The antimicrobial test for the isolated S. maltophilia showed a high level of sensitivity against most of the antibiotics used. Maximum sensitivity was recorded for ciprofloxacin (100% (38/38)) and levofloxacin 100% (38/38), followed by ceftazidime (97.36% (37/38)), trimethoprim-sulfamethoxazole (81.57% (31/38)), ticarcillin-clavulanate (60.52% (23/38)), and piperacillin-tazobactam (55.26% (21/38)). We observed a high prevalence of smeD (100% (38/38)) and class 1 integron (94.73% (36/38)) genes in the isolates, and none of the isolates carried the sul1 gene. The findings from this study indicate that resistance to trimethoprim-sulfamethoxazole was not observed, and still, trimethoprim-sulfamethoxazole is the best drug with desirable antimicrobial effect in the treatment of nosocomial infections caused by S. maltophilia strains. Despite the observation of a high number of class 1 integron, the sul1 gene was not observed, which indicates the role of this gene in high-level trimethoprim-sulfamethoxazole resistance and not having a role in low-level resistance. Based on our results, clinical microbiology laboratories need continuous surveillance of resistance rates to trimethoprim-sulfamethoxazole, because of the possibility of S. maltophilia acquiring trimethoprim-sulfamethoxazole-resistance by mobile gen elements.


Assuntos
Anti-Infecciosos , Infecção Hospitalar , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/genética , Integrons/genética , Irã (Geográfico) , RNA Ribossômico 16S , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Anti-Infecciosos/farmacologia , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...